Lecture 2

- 1. Recap (tensors ex. session)
- 2. EM waves
- 3. Integral John of M.E.
- 4. EM potentials
- 5. Gauge invariance
 - Methods for solutions of ME in electrostatics
 - 1. Green Functions Mothoel

 Tourples calculus recap

 - 2. Image charge method
 - 3. Expansion in Eigenfunctions
- · Magnetostatics

Gauss theorem

Stokes theorem

$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{S}}{\partial +}$$

$$\overrightarrow{\nabla} \times \left(\overrightarrow{\nabla} \times \overrightarrow{E} = - \frac{\partial \overrightarrow{G}}{\partial +} \right)$$

$$\vec{\nabla} \times \vec{\nabla} \times \vec{E} \simeq \vec{e}^{ijk} \partial_{i} \cdot \vec{e}^{kem} \partial_{k} \vec{E}^{m}$$

$$\vec{e}^{ijk} \cdot \vec{e}^{emk} = \vec{s}^{ie} \cdot \vec{s}^{im} - \vec{s}^{im} \vec{s}^{jl}$$

$$\vec{s}^{il} \partial_{l} \partial_{j} \vec{E}^{j} = \vec{o} \quad (\vec{\sigma} \cdot \vec{E}) = \vec{o} \implies \text{we get}$$

$$- \vec{o}_{i} \partial_{j} \cdot \vec{s}^{im} \vec{E} \simeq - \vec{o} \vec{E} = \vec{o}$$

$$- \vec{o}_{i} \vec{e}^{ijk} \partial_{i} \cdot \vec{e}^{ijk} \vec{e}^{ijk} \partial_{i} \cdot \vec{e}^{ijk} \partial$$

$$\partial_{+} \overrightarrow{\nabla} \times \overrightarrow{B} = g_{0} \mathcal{E}_{0} \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}}$$

This is the wave equation. Function Q(2-c+) with $C^2 = \frac{1}{96.20}$ is a solution. C = speed of light!

B satisfies the sauce equation: DB - μ.ε. B =0 Mistory ME~ 862-1864 Raddo ~ 1894 Es is redundant: 8,5 5 JEB, JEBJ

8,5 > SEOP, SEO S E, B > TE | E B this rescaling removes to grown ME. The only physical quantity is $C = \frac{1}{120}$

$$\vec{\nabla} \cdot \vec{E} = \frac{P}{E}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{E} = -\frac{\partial \vec{E}}{\partial t}$$

$$\vec{E} \cdot \vec{E}$$

4. EM Potentials

There is an equivalent description of CED in terms of EM potentials which is often more convenient

Bis div.-Iree

B= 7× A A = - Works

letis chech:
$$\sqrt[3]{3} \times \sqrt[3]{3} = \sqrt[3]{3} \times \sqrt[3]{3} = \sqrt[3]{3}$$

$$\overrightarrow{\partial} \times \overrightarrow{E} + \overrightarrow{\partial} + \overrightarrow{\partial} + \overrightarrow{\partial} + \overrightarrow{A} = 0 \iff \overrightarrow{\nabla} \times \overrightarrow{E} = - \frac{\partial \overrightarrow{B}}{\partial +} = 0$$

$$\overrightarrow{J} \times \overrightarrow{E}' = 0$$
 $(\overrightarrow{E}' = \overrightarrow{E}' + \overrightarrow{A})$ \overrightarrow{E}' is and, - grave

Let's chech:

$$\overrightarrow{J}(\overrightarrow{G}.\overrightarrow{E}) = \overrightarrow{J} \times \overrightarrow{J} \times \overrightarrow{E} + \Delta \overrightarrow{E}$$

We can substitute the definitions of potentials into ME to Ind the equations that potentials satisfy:

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \mathcal{L}$$

$$\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \overrightarrow{S} + \mu_0 \mathcal{L} \cdot \overrightarrow{S} = 0$$

$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial +}$$

$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$$

MIL:

$$-\Delta \vec{A} + \vec{\nabla} \cdot (\vec{C} \cdot \vec{A}) = \mu_0 \vec{S} - \vec{D} \cdot \vec{P} \cdot$$

MIII and MIV are automatic due
to the relation of E, B to 9, A
5. Gauge invariance
P, A' and prety determine E and B.
But different Pand A can correspond to the same E and B.
correspond to the same E and B.
Indeed: ==================================
Indeed: $\vec{E} = \vec{\nabla} \times \vec{A}$ $\vec{F} = \vec{A} - \vec{A} \rightarrow \vec{A}$
Leaves E B invariant. This ambiguity is called gauge invariance. It has projound consequences. Only E and B are observable hence we can use gauge transformations to simplify the potentials.
called gauge invardance. It has projound
consequences. Only E and B are observable
hence we can use gauge transformations
no simplify the potentials.
We will use it to enforce an extoq
equation that they satisfy (Loren 2
We will use it to enforce an extor equation that they satisfy (Loren 2 gauge condition)

Λ

18,9+7.A=0 Let us dreck that it is possible ころ+中ナーシナムートは・ア・イニの D1 + 20, 9+3. A=0 La possible to find d Now ME simplify a lot. $\frac{1}{c^2} \frac{\partial^2 A}{\partial + A} - \Delta A = \mu_0 \vec{3}$ $\frac{1}{c^2}\partial_{+}^2 - \Delta = \square$ - 37 P - XP = P

Note similarity for A and P.
Below we will use this form of ME.
Given A and P one Junes

Methods of solving ME in Electrostaties

$$\vec{A} = \vec{B} = 0$$
, $\vec{E} = -\vec{\nabla} \vec{P}$, with

If all charges are known, and

$$\Phi = \frac{1}{4\pi\epsilon_0} \int d^3x' \frac{S(x')}{|x-x'|}$$

This is "sun" over point-like charges

To Jond P in more complicated situations, we need more advanced tools.

1. Greens Functions Mothod (Sadison) Suppose we are given a set of theorges inside some region, and boundary conditions on P. Cusually 9=0 0-To Jind Pinsible V we would like to first solve for the greens Junetions with given b.c.: $-\Delta_{x}G(x,x')=\delta'(x-x')$ If $S_{x}F(x,x')=0$ then But with different B.C.

For Distellet and Newmann B.C. the G.F. is unique. Let us prove It Neumenni. $\vec{n} \cdot \vec{E} = -\vec{n} \cdot \vec{D} \cdot \vec{Q} = \mathcal{Q}(x)$ Dirtelilet: $\vec{Q} \cdot \vec{Q} \cdot \vec{Q} = \vec{Q}(x)$ As we will see below, use Jul B.F. are those with homogeneous B.C. (J=0 00 g=0). Letis start with proving a master formula: $Q(x) = \frac{1}{2} \int d^3x G(x',x) p(x) +$ $+\left(\mathbb{E}^{1}\cdot\left(\mathbb{C}\omega_{1}x\right)\overline{\nabla}_{x}^{2}\mathbb{P}(x')-\mathbb{P}(x')\overline{\nabla}_{x'}\mathbb{G}(\omega_{1}x)\right)$

to prove letis define the quantity F: $F = \int \int \int X' \, \nabla_{x'} \left(G(x', x) \, \nabla_{x'} \Phi(x) - \Phi(x) \, \nabla_{x} G(x', x) \right) =$ $= -\int G(x,x) \frac{S(x)}{2} + \int d^3x \, \delta^3(\overline{x}-\overline{x}') \cdot P(x') =$ used DP = -P used $D_XG(X,X) = S(X-X)$ $= \Phi(x) - \int G(x|x) \frac{P(x|)}{\varepsilon_0} u$ On the other hand, Gauss theorem applied to F gives $F = \int d\vec{s}' \left(G(x', x) \vec{\nabla}_{x'} \Phi(x) - \Phi(x) \vec{\nabla}_{x} G(x', x) \right)$ (2) Combining (1) and (2) gives (*)

(4) is true for any Boundary conditions on G or P. Depending on the problem it is convenient to choose GN or GD $|\varphi(x)| = g(x)$ = chose $|G_D| = 0$ $Q(x) = \frac{1}{2} \int d^3x' G(x',x) p(x) - \int d^3g(x') \vec{\nabla}_{x'} G(x,x)$ II, instead, $-\vec{n}\cdot\vec{\partial}\theta = g(x) - choose G_N: \vec{n}\cdot\vec{\partial}G_N = 0$

$$P(x) = \frac{1}{2} \int d^3x' G(x',x) p(x') + \frac{1}{2} \int d^3x' G(x',x) p(x',x) p(x',$$

In what Jollous we will use Unique ness of the solution to N and D problems. Suppose there are two solutions P, and Pz $|SP_i| = -\frac{P}{20}, \quad |P_i| = 9, \quad |P_i| = 9$ $|P_i| = 1,2$ Consider U= P,-Pz, and integrate SU = 0 $\int \overline{T}(U\overline{T}U) = \int \overline{D}U^2 = \overline{T}U = 0$ V = Causs $Q_1 - Q_2 = const.$ Job (UFU) = 0 (either U or JU

vandales) It Jollous

It Jollous that GD and GN are also unique (up to adding a const to GN)